The Discrete Nonlinear Schrödinger Equation – 20 Years On

نویسنده

  • J. CHRIS EILBECK
چکیده

i dAj dt + γ|Aj |Aj + ε(Aj+1 + Aj−1) = 0, (1) where i = √−1, the index j ranges over the 1D lattice. The lattice may be infinite (j = 0,±1,±2, . . .) or finite (j = 1, 2, . . . , f). In the latter case one usually assumes periodic boundary conditions, Aj+f = Aj . The quantity Aj = Aj(t) is the complex mode amplitude of the oscillator at site j, and γ is a anharmonic parameter. The connection with the continuous Nonlinear Schrödinger (NLS) equation iAt + γ|A|2A + Axx = 0 (2)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled Nonlinear Schrödinger equation and Toda equation (the Root of Integrability)

We consider the relation between the discrete coupled nonlinear Schrödinger equation and Toda equation. Introducing complex times we can show the intergability of the discrete coupled nonlinear Schrödinger equation. In the same way we can show the integrability in coupled case of dark and bright equations. Using this method we obtain several integrable equations.

متن کامل

Exact Moving Breather Solutions of a Generalized Discrete Nonlinear Schrödinger Equation

We obtain exact moving breather solutions of a generalized discrete nonlinear Schrödinger equation. For finite lattices, we find two different moving periodic breather solutions while for an infinite lattice we find a localized moving breather solution.

متن کامل

On the equivalence of the discrete nonlinear Schrödinger equation and the discrete isotropic Heisenberg magnet

The equivalence of the discrete isotropic Heisenberg magnet (IHM) model and the discrete nonlinear Schrödinger equation (NLSE) given by Ablowitz and Ladik is shown. This is used to derive the equivalence of their discretization with the one by Izgerin and Korepin. Moreover a doubly discrete IHM is presented that is equivalent to Ablowitz’ and Ladiks doubly discrete NLSE.

متن کامل

Spatial Disorder Of Coupled Discrete Nonlinear Schrödinger Equations

In this paper, we study the spatial disorder of coupled discrete nonlinear Schrödinger (CDNLS) equations with piecewise-monotone nonlinearities. By the construction of horseshoes, we show that the CDNLS equation possesses a hyperbolic invariant Cantor set on which it is topological conjugate to the full shift on N symbols. The CDNLS equation exhibits spatial disorder, resulting from the strong ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003